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Abstract

This chapter selectively surveys the literature on general purpose technologies (GPTs), focusing on

incentives and aggregate growth implications. The literature on classical GPTs (steam, electricity, com-

puters) and on classical great economic transformations (industrial revolutions, the information age)
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are linked to the theoretical and empirical literatures. The implications of GPT analysis for understanding

the history of productivity growth in the late twentieth century are taken up on the concluding remarks.
Keywords

general purpose technology, innovation, technical change

JEL classification: L0, L1, O3



Ch. 18: General Purpose Technologies 763

Author's personal copy
1. Introduction

The concept of “general purpose technologies” (GPTs) came into the economic analysis of technical

change and growth nearly two decades ago with a number of distinct but linked research goals.1 One

goal lies in growth macroeconomics, to provide an explanation of the close link between whole eras of

economic growth and the innovative application of certain technologies, called GPTs, such as the steam

engine, the electric motor, or computers. Another goal is in the microeconomics of technical change and

proceeds by differentiating between innovations of different types. The incentives and information

related to the invention of GPTs themselves, for example, may differ from those related to the invention

of applications; another example would be the incentives and information related to an established GPT

with successful applications in contrast to earlier stages. A third goal links the macro and the micro. Can

we understand the linkages between aggregate economic growth and the incentives and information

structures related to particular inventions and to their application in particular uses and sectors?

Each of these goals has received considerable attention, with a different mix of theoretical, empirical,

and historical methods. There has been a great deal of progress, though issues remain open about how to

test the most interesting and important ideas. Some criticisms of the approach have emerged as well.2

That makes this a good stage to revisit the original goals as altered by new research. A number of

overviews of the literature have been written, giving me in this chapter the opportunity to look forward.3
1.1. Basic structure of GPT
The original motivation for the idea of GPTs arose in part from the history of economic growth, by the

study of such key technologies in the past as steam or electricity and by the observation by economic

historians that pointed to certain technologies as having a central role in growth.4 Historical work also

pointed to the importance of complementarities between innovations in different “technologies” as

engineers understand that term.

My turn to the GPT idea with Manuel Trajtenberg was also motivated by our studies of the

contemporary economy linking computers, a GPT, to applications in a wide number of sectors. Manuel

Trajtenberg had done work quantifying the benefits from product innovation in CT scanners, a

computer-based medical diagnostic tool.5 I had worked on quantifying the benefits from computeriza-

tion in financial services.6 Each of us was convinced that the gains to computerization were already

large and spreading out across applications and sectors.7 Each of us had noted that the availability of

computers had enabled complementary innovation, one in health care, one in large organizations’
1 See Bresnahan and Trajtenberg (1995).
2 See, for example, Field (2008).
3 The macroeconomics and growth literature on GPTs is well surveyed in Jovanovic and Rousseau (2005), while the micro-

theoretical literature and much of the historical work has been summarized in Lipsey et al. (2005). Of course, anyone interested

in this area should read Helpman (1998), especially the introduction.
4 Such as Landes (1969), Rosenberg (1976, 1982).
5 See Trajtenberg (1990a).
6 See, for example, Bresnahan (1986).
7 I will return to the role of computers as a GPT below.
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accounting applications. An obvious question was how to assess the benefits from product innovation in

a particular sector or market, given that a substantial part of what’s going on is that the innovative

product is benefiting from innovation in one of its key components, say computers (or semiconductors).

In other words, how much can be causally attributed (in terms of the source of benefits) to innovation in

CT scanners or in finance company operations per se, as opposed to innovation in the computers that go

into it? A related but distinct question was how and why GPTs emerge. Do important general principles,

perhaps from science, create technological opportunity that can be widely exploited? Does work on

critical demand needs induce technical progress of general importance? Or is the process of market

invention that leads to GPTs more complex than either of those views? Together with the historical

observations that problems of coordination and of slow diffusion (perhaps because of the need for

complementary investments) this led us to GPTs.

These dual motivations led to a basic definition of GPTs with three parts: a GPT (1) is widely used,

(2) is capable of ongoing technical improvement, and (3) enables innovation in application sectors

(AS).8 The combination of assumptions (2) and (3) is called “innovational complementarities” (IC).

More precisely, IC means that innovations in the GPT raise the return to innovations in each AS and

vice versa. Label the technological level in the GPT as TG, and its rate of change as _TG. Similarly, label

the technological level in a typical AS, a, as Ta, and use the same dot notation for its rate of change. We

can then write the rate of change in the social return to innovation realized in applications sector a as a

function of GPT and AS technological change plus other causes (X): _Vað _TG; _Ta;XÞ. I focus only on the
social return, and leave implicit the underlying components of cost reduction in the a sector, improve-

ments in product quality or variety in the a sector, and so on.9 Further, because the ð _TG; _TaÞ, are fixed
costs, if we make the economy larger by increasing all production and consumption by the ratio m, the
rate of growth of social benefits in each AS increases to m _Vað _TG; _Ta;XÞ.
The first point to note about this is that if the functions _Va have increasing differences in ð _TG; _TaÞ, a

present discounted aggregate welfare measure will have social increasing returns to joint technology

investment in the GPT and all the AS.10 Over the relevant range, the social returns to the entire GPT

cluster, Sa

Ð ½ð _Vað _TG; _Ta;XÞe�rtdtÞ�; will be larger if all of ð _TG; _TaÞ are increased together, and will be
larger if all of them are increased in a coordinated fashion than if there is not a coordinated increase.

What is important here is that the social increasing returns to scale (SIRS) arise across the entire cluster
of technical change in the GPT and technical change in the AS.

A related macroeconomic growth point arises when the span of the applications sectors in a GPT

cluster covers much of the economy. Then the SIRS associated with a GPT are economy-wide increasing

returns. Thus GPT models fall within the class of models which can have sustained aggregate growth.11
8 This definition has been refined and improved. See Helpman and Trajtenberg (1998a). A far longer statement of this defini-

tion and careful thought about boundaries can be found in Lipsey et al. (2005). The question of what precise time period is the

“age” associated with a GPT is taken up in Jovanovic and Rousseau (2005) who also consider definitional alternatives.
9 Fully specified macro growth models derive _V from the aggregate consumer welfare measure of the entire economy. In a

slight change of notation, I bridge between the micro and macro notation by emphasizing the part of aggregate welfare deter-

mined in sector a.
10 The function _Va ð _TG; _Ta;XÞ has increasing differences in ð _TG; _TaÞ if for all X, t > t0 and u > u0, then
_Vaðt0; u0;XÞ � _Vaðt; u0;XÞ � _Vaðt0; u;XÞ � _Vaðt; u;XÞ.
11 As Romer (1986) points out, only with increasing returns can an aggregate economy grow at a constant or increasing rate. He

emphasizes technical change as a source of increasing returns.
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If the technological opportunity associated with _TG; _Ta can be sustained over a range of increases in the

technological levels and thus sustained over a period of time, a GPT can continue to provide the backbone

of that growth. If the GPT itself or any of the associated _Ta are embodied in capital goods or are

complementary with capital investment, then this technical progress will be associated with continued

growth of the economy’s capital stock. This growth, _K , arises from a technical-change induced increase

in the marginal value product of capital and thus is itself associated with resolving the limits to growth in

constant-returns models.

As we shall see below, the key elements relating the cluster of a GPT and innovation in its

applications to aggregate growth are a mixture of the obvious and the much less obvious. Like many

models of innovation, a GPT cluster can overcome diminishing returns because innovation is inherently

an increasing returns activity. Obviously, if a GPT has economy-wide scope, the relevant increasing

returns also matter at the aggregate level. Less obviously, a GPT can trigger sustained innovation over a

period of time because of the positive feedback between GPT and AS.
1.2. Industry structure, organization, and incentives
The basic structure of a GPT leaves unspecified a large number of details of how GPT and different AS

are supplied, of their economic characteristics, and of the nature of interactions between GPT and

AS innovators.

The basic GPT structure could be mapped into goods and markets in any of a number of ways. The

GPT could be disembodied knowledge (as in the example of the factory system or mass production), or

it could be embodied in a good or service that is purchased by the applications sectors (as in computing).

If it is embodied in a capital good, that good could be bought by the applications sectors (like a computer

or an electric motor) or, alternatively, services of that capital good could be sold by a GPT firm to each

AS (like railroad tracks). These alternatives are related to but distinct from the question of how

invention in the GPT and the AS are financed. The GPT can be in the public domain, controlled by a

single firm with a patent or trade secret, or supplied by a large number of different firms each of which

has distinct versions. The same set of alternatives applies to the AS; the applications technology can be

disembodied (or not) protected by patents or trade secrets (or not) and supplied to the AS by a specialist

firm or firms (or not.) The invention in the AS can be undertaken by each firm in the AS, or a specialist

may emerge to supply a technology-bearing good.

There is a parallel question of timing of investment. Consider the difference between a railroad and a

steam engine. A railroad line must be invested in before any customers can be served; the corresponding

investment in a steam engine occurs on a customer-by-customer basis. More generally, there could be

any of a wide number of relationships of the timing of initial investment and the sunkness of investment

in both AS and GPT. As we shall see, these timing distinctions have important implications for the

social return to a GPT and for the role of GPTs in long-term swings in productivity growth.

The relationship of the GPT to the AS’ invention can also take many forms. There could be a

technical spillout from the GPT to each AS, as in the case of a GPT which is an inventor’s tool. There

could be the enabling of technical opportunity for the AS, as in a GPT like electricity which created

opportunities for plant-floor industrial engineering, even though industrial engineering and electricity

are separate bodies of knowledge. There could be the enabling of market opportunity in many AS
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(potentially requiring innovation there) as in the case of the widespread use of the Internet. The original

general idea could be invented for a specific purpose, then made general and abstract for reuse

elsewhere. I emphasize the variety among potential relationships in order to point out the obvious but

sometimes overlooked point that implications of specific model of interaction are not the same as

implications of the basic GPT structure.

Similarly, the basic GPT structure could be mapped into a number of distinct vertical markets or

organizational structures. There could be an ex ante contract among potential inventors in the AS sector

and the GPT. Or that contract could be less formal, in that a GPT innovator “evangelizes” co-invention

in the AS. Or the AS and GPT can be disconnected, as when a GPT emerges from one or two specific

ASs. The potential externality associated with public R&D outcomes in the GPT sector itself can lead to

creation of GPT specialist firms in order to gain some appropriability. Other structures are also

possible.12

To move from the social returns to innovation to the private returns depends upon the detailed models

of markets, of the economic institutions supporting appropriation by innovators, and of the dissemina-

tion of information about innovations. In the GPT context, this covers a great deal of ground, as there are

multiple markets and multiple innovations in play.

However, there are some basic incentives which underlie any of these different structures. Accord-

ingly, while some authors have emphasized those details, I shall work with a summary model of the

returns to innovators from their innovations. Let la be the fraction of the social value created in sector a
to a-innovators. Similarly, let a fraction lG of the value created in each AS go to g-innovators, and a

fraction lc to consumers. It is always the case that la þ lG þ lc � 1, and the more typical case is the

strict inequality <1 so that there is some social waste caused by the use of patents, secrecy, or some

other appropriability device in either the AS or the GPT or both. I shall leave that in the background in

what follows, however, as I do not treat the mechanisms determining la and lG. The fixed-l assumption

corresponds most closely to a model in which each innovator gets a patent of fixed length and charges

the price associated with the market power conveyed by that patent for the term of it. It rules out more

complex structures that might result from complex economy-wide contracting among inventors in the

GPT, multiple AS, and consumers, and thus corresponds to the case of a market economy. I assume that

there is an efficiency frontier Eðla; lG; lcÞ and (to avoid constant repetition) that society’s innovation

system is on this frontier, so that an increase in la holding lc constant, for example, must reduce lG.
1.3. Social increasing returns and related externalities
This treatment of the private return to inventors in a GPT sector and in a number of application sectors

has the advantage of bringing the duality of social increasing returns to the fore. Consider the private

returns to invention in applications sector a, which are given by
Ð
la _Vað _TG; _Ta;XÞe�rtdt. A higher rate

of technical progress in the GPT sector, higher _TG increases both private return to the innovator in a and
the marginal return to increases in with _Ta (the latter because of the increasing differences, i.e., the IC).

This has dual implications.
12 These issues have a large literature associated with them. An excellent overview can be found in Arora et al. (2001).
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First, as a positive-economics matter, there are clear implications for any model in which inventors in

different sectors act independently. Increasing differences mean that increases in _TG will increase the

incentive for innovators inASa tomake increases in _Ta. Similarly, increases in _Tawill increase the incentive

forGPT innovators tomake increases in _TG. These increasingdifferences canovercomediminishing returns

to investment in technical change only of each type, potentially over a wide range of improvements.

There are other implications of the same set of assumptions that come to the fore within the

microeconomic approach. The basic assumption which makes a GPT analysis interesting is that all of

the different sectors of the economy, and all the different subprocesses within the production process in

each sector are quite heterogeneous. Diagnosing brain tumors and tracking/collecting accounts receiv-

able, for example, are extremely different production subprocesses important in very different sectors of

the economy. The innovation cost function of a large, heterogeneous economy can be lowered in the

aggregate if there is a mechanism to share the fruits of innovative effort across some of these diverse

sectors and subprocesses. The diagnosis and accounting example—the motivating example for the idea

of GPTs—illustrates how technical progress in computing could, if combined with co-invention in

medicine and in finance, be spread across a wide number of sectors of the economy. More generally,

GPT models assume that specific intermediate inputs can be made very cheap through continued

technical advance, and that those inputs are easily made useful in a wide variety of sectors and

subprocesses. Ideas and thus innovations, in general, are characterized by zero marginal costs of reusing

an idea. Any specific innovation may quickly run out of places in the economy where it has a positive

marginal value product, that is, runs into diminishing returns. The GPT structure creates a wide scope

of applications for GPT innovations, and thus a large level of social increasing returns, by using AS

co-invention to avoid the problem of diminishing returns.

However, there is also an externality. While an increase in _TG gives an incentive to AS inventors to

increase their innovative efforts, they pick _Ta to maximize lc _Va. If they were maximizing all of

producer returns, they would pick the even higher level of _Ta that would maximize ðla þ lGÞ _Va.

This external effect is above and beyond the spillouts to consumers not internalized by inventors (which

the GPT literature treats as an unavoidable cost of invention.)

This externality is symmetric. Consider the private returns to inventors in the GPT, which is

summarized by lG
P

a

Ð
_Vað _TG; _Ta;XÞe�rtdt. A higher rate of technical progress in any a sector, _Ta,

increases both private return to the innovator in G and the marginal return to increases in with _TG

(because of IC.) So the symmetrical results hold: there is the positive prediction that increases in any _Ta

will causally lead innovators in the GPT to increase _TG. There is also the external effect. The increase in
_TG maximizes lG

P
a

Ð
_Vað _TG; _Ta;XÞe�rtdt, that is, it is less than the amount which would maximize

producers’ returns for all producers as a group.

In addition to that familiar “vertical” externality between AS and GPT inventors, there is an

additional externality in a cluster with more than one AS. This might be called an “indirect” as well

as a horizontal externality. The easiest way to see it is to view the problem as a game among AS

inventors, pushing the G inventors into the background. To do that, let _TGð _TAÞ be the behavior of the G
innovator as a function of all of the inventive activity of all the AS. Then each AS has the private

incentive to pick _Ta to maximize
Ð
la _Vað _TGð _TAÞ; _Ta;XÞe�rtdt. But that leads to a lower choice of _Ta

for all a than if each AS instead maximized
P

a

Ð
la _Vað _TGð _TAÞ; _Ta;XÞe�rtdt.

The basic GPT structure implies three general results, SIRS in economy-wide invention and the two

external effects. The social increasing returns stem from the superadditivity between inventive effort in
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the GPT and inventive effort in the applications sectors.13 There will be a high social rate of return to

success at coordinating technical progress in the GPT with technical progress in a large number of

applications sectors. As is true of any model with social increasing returns, however, there are external

effects. Given the particular structure of basic GPT model, there are two external effects. There is a

“horizontal” external effect across applications sectors (each application sector would like other

applications sectors to invent more than is in their independent interest) and a “vertical” external effect

(increases in the economic return to GPT invention at the margin imply either social waste or decreases

in the return to AS invention.)

As the original motivation discussion suggests, the analysis of GPT has a number of linked purposes

in economic history, growth economics, and the economics of technical change. While the original idea

linked GPTs to an age: GPTs would be “steam” and the era in which the GPT creates value to be the

“age of steam,” this is in many ways too limiting a treatment, as we can see from writing down the

model above. One obvious point to make is that the external effects and the SIRS associated with a GPT

do not turn on it having economy-wide scope. If there are a substantial number of different applications

sectors, but not all the economy, there still can be considerable SIRS from sharing a common input.

Similarly, the problems associated with successfully achieving coordination (incentives or information

for technical forecasting) would be the same even if the scope were less than economy wide. This led to

one of the forks in the road for GPT analysis: there is a “microeconomic” branch which emphasizes the

structure of payoffs and a “macroeconomic” branch which looks more at economic aggregates.

In micro approaches, the obvious core of the opportunity/problem contrast is achieving coordination.

Absent coordination among a GPT and a number of AS, the private return to innovation in either area

fall short of the social returns because of the two external effects. Better coordination leads to a positive

feedback loop in which innovations in either AS or GPT raise the private incentives to innovate

elsewhere in the system. These are, of course, classical features of anything which is modeled as a

coordination game. The implications, embodied in either a static or dynamic context, drive the results

that a GPT positive feedback loop may be slow or difficult to start but valuable once it begins.

There are a number of other purposes in the GPT literature which I leave out for purposes of space.

There is a considerable literature linking GPTs to changes in factor demand, particularly to skill-biased

or to antiskill-biased technical change, for example.14 And a management literature discusses the

difficulties of commercializing a GPT, for example, see Thoma (2009).

It is worth pointing out that the idea that GPTs are important for growth is distinct from the idea that

advances in GPTs are themselves important inventions. It is the joint invention in GPT and many AS

which creates economic value.15
13 A large and very successful literature has analyzed games with the structure where increases in the activity of one agent raise the

return to increases in the activity of other agents, that is, supermodular games. SeeMilgrom and Roberts (1990). Innovational comple-

mentarity means that basic structure of a GPT implies that most formalizations will lead to a supermodular game. Another literature

which has much in common with our undertaking is the literature on standards and compatibility, which has a great deal of emphasis,

as do we here, on sharing across agents. A review of this literature can be found in Farrell and Klemperer (2006).
14 There is a large literature on the topic of GPTs and skill-biased technical change. One could start a bibliography from

Acemoglu (2002), Aghion and Howitt (2002), Bresnahan (1999), and Bresnahan et al. (2002).
15 Patent studies have created empirical definitions of an important patented invention, for example, an invention which has

been cited many times. Economic historians have also brought forward empirical definitions of important inventions, for exam-

ple “pivotal” inventions without which social gains would be smaller.
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Finally, just as it would be a mistake to say that steam power came out of nowhere to create the age of

steam, so too it would be a mistake not to note the many ideas closely related to GPTs, some much older.

Clearly there is a relationship between the idea of a GPT and the idea of a technoeconomic paradigm

(Dosi, 1982). Similarly, there is a relationship to the idea of a macro invention (Mokyr, 2002) and to a

strategic invention (Usher, 1954). Finally, many industries have the concept of an enabling technology,

by which they mean a GPT.

Another limit on the ability of GPTs to overcome diminishing returns arises because of the inherent

dual nature of using sharing to achieve scale economies across diverse applications.16 There is an

element of compromise inherent in sharing if heterogeneous sectors and subprocesses do not have

exactly the same ideal direction of technical progress. Diversity arises if each heterogeneous application

would be best off if the shared input were exactly to its specifications (even taking into account the

application’s ability to undertake costly co-invention.) A single shared input can gain scale economies,

but the requirement to fit a wide variety of diverse applications creates tension.

To return to the basic diagnosis/accounting example, an MRI machine and an accounting system have

a common input, computing. They also have different optimal specifications for a computer in their

derived demand for this input—even after we take into account the co-invention effort. Scientific and

engineering applications of computers, like the MRI machines, typically have optimal specifications

involving an inexpensive computer which can perform numerical calculations effectively. Business data

processing applications, in contrast, have optimal specifications that put significantly more weight on

reliability, large-scale data input/output operations, fail-safe maintenance of databases, and so on.

This diversity has been met in the computer industry by market segmentation, with minicomputers

and mainframe computers each somewhat more optimized for scientific/engineering or business data

processing applications, respectively. This market segmentation involves a limitation on sharing

technical inputs. It also creates partially separate, partially overlapping, positive feedback loops. This

point, which is a familiar one in industry analysis, also has implications for the analysis of invention.

I shall return to these below. For now the point is that the model in which there is “a” GPT and it is

seamlessly used in all the sectors and subprocesses of an economy needs to be thought through carefully.

There are several elements left out of this basic structure and exploring them has been the backbone of

the literature. One essential feature for the study of long run growth and technical change is an element

of time. Indeed, the literature has been very rich in adding dynamic elements to the basic structure, both

empirically and historically. I review this element of the literature, which is rich and varied, in section 4,

below.
2. Empirical and historical studies of past GPTs

While the basic microeconomics and macroeconomics of a GPT cluster are clear, understanding their

empirical application involves resolving some definitional questions and deciding how to deal with

some complexities. Since these are inherently matters concerned with application, in this section,

I examine them in the context of the historical analysis of steam power and electrification.
16 Many of these ideas have come out clearly in the standards and compatibility literature. See Gilbert (1992).
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2.1. Steam
Steam is the prototypical GPT and the history of steam suggests a number of important complexities for

us to consider.17 The first point is that steam power took a very long while to diffuse across applications

sectors. Starting from the eighteenth century, steam was first important in mining and then in textile

manufacturing. Yet even a century and a half after the first production use of steam, steam still did not

provide the majority of power used in textile manufacturing.18 Steam power diffused to other

manufacturing industries yet more slowly. Steam was used in transportation (especially in ships and

in railroads). As in manufacturing, the within-sector diffusion in transportation was a long, slow process.

Steam-powered ships replaced some sailing ships quickly, notably in uses where wind was unreliable or

reliability was extremely valuable, but sailing ships persisted in other uses into the twentieth century. As

in the economics of technology generally, the speed of diffusion is central in the study of GPTs. As we

shall see, the literature has taken up the question of slow diffusion of GPTs in detail.

One reason for the slow diffusion of steam was supply constraints. Early steam power had profound

limitations. It could not provide continuous rotary motion, for example. This thwarted applications

where mechanization was central. After at least two major improvements in the steam engine (from

Newcomen and Watt), rotary power was at last possible. A second limitation of early steam power was

the problem of process control. Until steam engines could provide power that could be predicted, stable,

and steady, that is controlled, it would be unsuitable for applications that could not use jerky or

otherwise unreliable power. The invention of the Corliss steam engine and its ongoing improvements

provided much more controllable steam engines, long after steam power came into productive use. The

basic definition of a GPT emphasizes this capability for ongoing improvement, of course.

Improvement in steam power involved a wide range of different “technologies” in the engineering

sense, that is, a wide range of different bodies of knowledge. These included but were not limited to the

science-based idea of steam power itself (the discovery that water and steam were the same substance,

the working out of the relationship among temperature, pressure, and volume, etc.). Improvements in

materials (stronger boilers), improvements in mechanical understanding, improvements in fuels, and so

on, all played a part. The complementary nature of these different technical inputs within the GPT itself

(steam in this case) occurs over and above the complementarity between improvements in steam power

and improvements in using industries which take the form of innovations to take advantage of steam

power. In the case of steam, the economic incentive to supply and improve the complementary inputs to

the steam engine itself was at work for a long period before the steam engine had suitable features to

enable a wide range of innovations in complementary activities.19
17 My account of steam power draws heavily on (inter alia) von Tunzelmann (1978), Lipsey et al. (2005), Landes (1969), Crafts

(2004), Crafts and Mills (2004), and Rosenberg and Trajtenberg (2004).
18 The century and a half is from Savery’s introduction of a steam-powered pump at the end of the seventeenth century to the

state of power in textiles as of 1850 (reported by Landes, 1969).
19 This is the useful distinction between “backward linkages,” for example, the incentive to create better complementary com-

ponents or inputs to the steam engine, and “forward linkages,” for example, the incentive to create complementary applications.

The observation that historically backward linkages predate forward linkages in steam is of course from von Tunzelmann (1978).
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Steam power is in a particularly interesting relationship to coal, and one that illustrates a general

point. It is at once true that coal is a fuel for steam engines and that early steam power was particularly

important in mining, including in the mining of coal. The dependence of coal on steam and of steam on

coal immediately suggests the importance of a general equilibrium analysis in which technical and

market advance in coal and in steam engines are jointly determined. Given that the base idea of a GPT

bridges from the analysis of technology to the analysis of society’s growth needs, one should of course

expect general equilibrium effects. The literature on macroeconomic implications of GPTs has, as

I pointed out above, emphasized the scale-economies-relevant point that general equilibrium effects can

arise through endogeneity of the size of the entire economy. Here we see a related general point that

arises on a wide scale if not all of GDP. In the case of coal and steam, general equilibrium effects do not

arise through size of the entire economy, but rather through the market size and technical state of the

“modern” economy. This general point relates to such other general equilibrium concepts (if not yet as

wide as the whole economy) as the size and technical level of the “industrial” economy, of the

“postindustrial” economy, and so on.

The nature of the improvements in steam power that loosened the supply constraint on diffusion

brings us to another general point about technical progress and thus about GPTs. These improvements in

steam power did not merely take the form of lower costs for an existing set of product characteristics.

Instead, the available range of steam engine product characteristics widened. Over a long period of time,

there were a number of changes in important product characteristics, above and beyond the two very

important ones (rotation, control) just mentioned. Improvements in product characteristics generally are

an important source of value creation in technical progress (Trajtenberg, 1990b). This is especially the

case when the improvements in product characteristics create either the opportunity for or the incentive

for complementary innovations (Bresnahan and Gordon, 1997). The important distinction between

improvements in cost and improvements in those product characteristics which are not like cost applies

to GPTs as well. In steam power, there was a particularly stark version of this general principle.

Improvements in characteristics of the GPT permitted a wider range of applications through enabling

complementary innovation.

Another set of general points that arise in the case of steam concern the relationship of a GPT to

earlier technologies. Steam replaced water, wind, and muscle power, but not immediately and not

everywhere. Each of those earlier power sources had had centuries of technical progress. Wind and

water power are unreliable, an important source of market opportunity for steam. More generally, the

weaknesses of the preexisting technologies relative to the new GPT are an important determinant of the

GPT’s early scope of application, as are the degree to which existing complements are specific to old

technologies. Second, a preexisting technology may not be static, and improvements in it may delay the

diffusion of a new GPT. Those improvements can be accelerated by competition or learning by the old

technology from the new GPT.

A second general point revealed by the case of steam is that the preexisting technologies may have

complementary inventions in some or all of the potential applications sectors for a new GPT. These may

be sunk investments, or the old AS invention may be portable to the new GPT. In the case of steam,

portability of some preexisting complementary investments showed an element of dynamic comple-

mentarity between an old technology and a new GPT. We can see an illustrative example in the use of

water power in manufacturing applications which later came to use steam. The complementary inven-

tions needed to take advantage of a mechanical power source (water) in some cases could be adapted to
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a new one (steam.) The new power source could be used where and when it was cheaper or more

valuable, as steam could be when the water was not flowing (reliably).20 More generally, if the

complementary innovations used with an earlier technology are not (prohibitively) specific to it, they

can also become complements of the new GPT. This creates a kind of dynamic complementarity

between a new GPT and the older technologies it replaces. The costs and delays associated with

inventing (some) complementary applications for a GPT will be lessened to the degree that those

applications were already developed for an earlier version.

This dynamic complementarity should not come as a surprise. Much of technical progress is

recombinant. Recombination of existing complementary innovations with a new GPT is just one version

of that.21 More importantly, recombination tells us to avoid thinking too much about the “importance”

of any particular technology. That is not to say that steam or other GPTs are unimportant. Instead, it is to

say that what generates real economic progress is the cluster of a GPT and applications innovations,

which together bridge technical opportunity and market opportunity. From one perspective, steam is just

another power source. From another perspective, the partial transition from wind, water, and muscle to

steam opened up a new avenue of ongoing improvement, one which had a significantly better future in

some ways than any of the preexisting technologies.

There is an irony in the observation that the transition from wind, water, and muscle to steam, and

later to electricity, created the opportunity for sustainable growth. Many observers today believe that

long run growth of the economy can only be sustainable if it involves a transition away from the carbon

fuel sources used for steam and electricity. What this reflects is a deep economic observation: what

sustains a growth path depends on the underlying economic conditions. When a fundamental constraint

facing the economy was the limits of muscle power and the limits, given the technology of the day, of

steam and water power, successful exploitation of fossil fuels was central to sustaining long-run growth.

Generations later, we have discovered a cost of further growth we did not know we had, the climate

costs of carbon dioxide in the air. Given that technical knowledge is at a much more advanced state

today, particularly technical knowledge about the manipulation of physical production processes, I

would anticipate that the most difficult problems associated with carbon in the atmosphere are policy

formation rather than technical change and that the growth limitations associated with carbon in the

atmosphere will, after some twenty-first century technical progress, not appear all that important.

While steam had a long slow start as a GPT, it then had a takeoff. Nathan Rosenberg and Manuel

Trajtenberg have argued that supply constraints which had been holding back the diffusion of steam to

application sectors were relaxed with the invention of the Corliss steam engine in the mid-nineteenth

century, triggering the Victorian “age of steam” (Rosenberg and Trajtenberg, 2004). Corliss’ inventions,

especially a better system of valves for the steam engine, led to a price reduction by improving steam

engine’s energy efficiency and to a quality improvement by permitting control of the engine to achieve a

continuous uniform power flow. Rosenberg and Trajtenberg argue that these changes, especially the

quality improvement, made a much wider range of manufacturing applications possible.

Rosenberg and Trajtenberg provide a careful econometric examination of the diffusion and use of the

Corliss engine in the United States in the late nineteenth century. It is important to point out at the outset
20 An extreme version of this complementarity can be seen in the use of steam power to lift water from a storage pond to the

intake of a water wheel.
21 See Weitzman (1998) for a discussion.
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that Rosenberg and Trajtenberg—like many of the research papers we will see below—do not have data

which directly measure co-invention. Their investigation of co-invention at the leading manufacturing

adopters of steam (which they list) is limited to discussion of particular instances. Historical methods, in

their work and earlier work, linked the large-scale stationary steam engine to the successful exploitation

of scale economies in manufacturing plants.22 They do not have systematic data on the use of

technologies in manufacturing complementary to steam. Instead, they use relocation of manufacturing

to places where water power is limited as the observable indicator of co-invention.

This data limitation is one we shall see over and over. “Technical” GPTs create technological

excitement, so there are good data about steam. There are less good data about complements to

steam, such as the reorganization of manufacturing plants to use new manufacturing methods and a

new power source. Rosenberg and Trajtenberg are compelled to use the observable relocation of

economic activity as a proxy for its unobservable reorganization. They thus rely on data relating to

the economic growth consequences of successful co-invention and on an economic model of the joint

determination of adoption of steam power and of co-invention in manufacturing.

Examination of economic relationships involving complementarities is always difficult. Rosenberg

and Trajtenberg have a sound attack on the problem that use of a new technology and economic

development are jointly determined by actions in the application sectors and in the technology itself.

They estimate a two equation system where the fundamental unit of observation is a place. One equation

predicts the use of power source, steam, or water power, based on a model of the comparative advantage

of those two power sources. (Water power has great advantages where it is present, but demand and/or

transportation to demand may not be colocated with water power.) This gives them a reduced-form

prediction for adoption of steam. They also estimate a local economic growth equation in which steam

use is one predictor, but is treated as endogenous.

Rosenberg and Trajtenberg interpret the role of use of Corliss engines in local growth after 1870 in

the United States as an indicator of the economic value of relaxing the locational constraint of water

power. In this interpretation, they are seeing the portion of rapid economic growth resulted from moving

manufacturing activity to where it was valuable. The further possibility that the co-invention of new

steam using manufacturing plants could itself be valuable technical progress cannot be separately

identified using their methods.

The example of the Corliss steam engine shows also one of the important features of a GPT, which is

that ongoing improvements in it permit a renewal in complementary invention in complements. This is a

central element of theories in which GPTs are part of sustained technical progress or growth.

There are a number of broad economic growth trends of the late nineteenth and early twentieth

century closely linked to the shift in power sources which so far have not been and probably cannot be

studied in a careful econometric analysis. The change in power source is also a complement for the

growth of manufacturing’s share in final output (new consumer and investment goods, or better or

especially cheaper variants of existing consumer and investment goods) for organizational innovations

such as the factory system, interchangeable parts, mass production, and so on. The larger scale factory in

which the steam “prime mover” was efficient was complementary to the creation of an effective

transportation system and of mass marketing. Steam power is thus part of—but one would be unwise
22 Rosenberg and Trajtenberg also examine the relationship between plant size and steam power within a few important

industries systematically, confirming the results of earlier case studies.
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to say a main cause of—a transformation of the economy toward “scale-based industrialization and

urbanization.” In short, while the importance of steam power as a part of a cluster of related nineteenth

century innovations is high, it seems unwise to attempt to parse out separately the contribution of each

of those innovations.

Did steam power make an important contribution to economic growth? Only if steam power enabled AS

innovation, i.e. important inventions in factory mechanization. Nick Crafts has undertaken a calculation

which demonstrates this clearly, I think. Crafts’ cost saving calculation compares actual expenditures

ex post the deployment of steam to the costs of undertaking those same applications if steam power were as

expensive as it had been a generation earlier. This is a fairly aggressive cost-index calculation, since it uses

the quantity of steampower determined after steamhas become cheaper andmore capable as the baseline.23

Perhaps that is Crafts’ point, as he shows relatively modest gains in the cost-index calculation. Crafts also

agrees with Rosenberg and Trajtenberg about the timing of noncost gains from steam power, linking them

to the later period after the Corliss variant of the steam engine had begun to diffuse.

Another important area that is revealed by examining the history of steam closely is that there are

indeed links between technical advance in the sense we usually understand it and the analysis of a GPT

cluster. One point is related to the problem of mechanization. This created considerable technical

progress in machines of all kinds to be used as producers’ durable goods. That was complementary to

new power sources; one might want to be careful, however, before assigning causation to power rather

than mechanics or vice versa. Another point—and I would apply these both to mechanical improve-

ments and to steam power, is the one that Lipsey et al. have called a “general purpose principle.” They

have done a valuable service to clarity by drawing a distinction between a “general purpose principle”

and a “general purpose technology.” The Corliss steam engine was a GPT; it drew on the idea the steam

engine as a GPP. There are three useful points to be made in this connection. First, it is a mistake from an

economic perspective to focus on a specific and narrow technology in the analysis of GPTs. Instead, the

focus should be on a general purpose principle as one of the attributes of a GPT. The switch from water

power to steam or from steam to electricity represents a lowering of the costs of an important

intermediate input, valuable in mechanization.24 Another general purpose principle, digitization, simi-

larly achieved a considerable cost lowering when vacuum tubes were replaced by transistors and then by

integrated circuits.
2.2. Electricity
In dealing with electricity, we face some of the same questions in deciding what to consider the GPT

itself as we did in steam.25 It includes deep scientific knowledge originally of no practical implication,

and also includes the engineering knowledge needed to generate and transmit power, together with a

great deal of generally useful engineering knowledge about electric devices such as design knowledge
23 If one were to make such a calculation for computers today, for example, the “cost savings” to computers would substantially

exceed GDP. As I pointed out in an earlier paper (Bresnahan, 1986), if one were to make such a calculation for mainframe com-

puters circa 1972, the “cost savings” to computers through that “after” date would substantially exceed 1972 GPT.
24 This point has been made powerfully with regard to the history of light in Nordhaus (1997).
25 This section draws heavily on David (1990), David and Wright (2003), Duboff (1979), Hughes (1998), Lipsey et al. (2005),

and Nye (1998).
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for motors or light bulbs. The GPT cluster surrounding electricity included, of course, a wide range of

kinds of knowledge in all the different AS. From a growth perspective, the most important group

of these was associated with application of electricity in manufacturing. Automation and mechanization

of manufacturing were a major growth pole during the period of electricity’s diffusion in the first half of

the twentieth century.

Some important applications of electricity were, in contrast to steam, organized and distributed as a

supply network with coordinated invention of a number of different technologies. The telegraph,

drawing on earlier inventions, was itself invented as a communications system. So too was the

telephone, later on. The city electric light company, with generation system, distribution system, lights

at the end of the wires, and other technologies, was supplied as a system. The city public transportation

system build around the electric rail/trolley was another system. These industry and organizational

structure differences between steam and electricity suggest a close examination of the role of economic

organization of a GPT, but I will not attempt such an examination here.

At a minimum, these historical examples illustrate the varied industry structures and information

structures which can accompany the founding of a GPT. Some electrical applications (lighting systems,

communications system) were invented in coordinated ways as a system. This stands in contrast to

steam power, where different technologies were invented far apart. Models of the information structure

of invention to help us understand these differences are, to date, lacking.

The electrification of manufacturing plants and processes had invention divided between applications

sectors and GPT inventors. Richard Duboff (1979) made an analysis of the diffusion of electric power

into American manufacturing and of the co-invention of applications in manufacturing. His analysis,

while resolutely specific to the time and technologies he was writing about, and without any claim of

generality, nonetheless has a number of important observations which can help us understand diffusion

of a GPT.26 As a central idea, Duboff writes about the advantages of using electric motors in

manufacturing plants with a fab-assembly production process.27

To be sure, at the beginning electric motors replaced steam engines in many manufacturing plants

without much new co-invention. The complex system of belts and drives used to move hard-to-divide

steam power could also transmit the power of a large electric motor. Where (typically because of fuel

prices or transportation difficulties) electricity was cheaper, it could modularly replace steam power in

existing plants. We thus see, once again, the dynamic complementarity between an old technology and a

new GPT.28 However, if electricity were no more than a cheaper power source, its importance would be

less than a GPT.
26 Duboff (1979) refers to electric power as a “strategic invention” in the sense of Usher (1954), but it is clear that his implicit

definition is clearly quite close to the modern definition of a GPT. The availability of motors, lights, and heat equipment after

about 1890 was ready to permit “radically different procedures” in production, that is, co-invention. Without benefit of modern

theories of network effects and externalities, Duboff nonetheless wrote about how a “chain reaction” arose among adopters.
27 Electrical power other than electric motors would be used in other parts of manufacturing, for example, as a source of heat.

This illustrates one of the scope-of-coverage difficulties of GPT analysis. Electrical power? The electric motor? A similar prob-

lem arises in modern technologies. Integrated circuits? The computer?
28 As in the case of steam replacing water power, there was also an ironic interim stage in which steam power at an individual

manufacturing plant would be deployed to make electricity, which would be distributed to electric motors within the plant for-

merly powered by steam.
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It was the ability of electrical power to enable co-invention, however, which played a role in a

productivity growth boom. Electric motors could be made much smaller than steam engines. This

enabled the distribution of the power source to specific locations within the manufacturing plant. This

distribution came to be called “unit drive,” that is, one power source for each use. The advantages of unit

drive were that it permitted industrial engineers to redesign plants to follow the logic of the

manufacturing process. Beforehand, they had needed to trade off organization for process against

organization to deal with the difficulties of mechanically distributing steam power. Relaxing this

constraint enabled invention of new manufacturing processes. Over a period of time, that innovation

took root, first in new plants, then in older plants, and involved much larger cost savings than the narrow

cost advantage of electricity over steam.29

Duboff’s analysis of the “stages” of cost reduction through the use of electric motors in

manufacturing captures the idea that costs and delays in co-invention can slow diffusion even where

technical advance in the GPT itself is speedy. Duboff examines the path by which electric power led to

productivity gains in manufacturing, pointing out that invention in the AS (individual manufacturing

industries) lagged behind invention of the GPT itself, as the effective exploitation of electric power in

each distinct manufacturing industry called for complementary invention in the production process.

The noncost advantage of electrical motors, particularly at small scale, implied another need to share and

another public good problem. If small plants were to be electrified, they could share generating equipment

(which had much larger efficient scale) only with an electrical distribution system in place. Thus, even in

those areas of application of electricity where applications sectors succeeded in inventing, the horizontal

externality continued to be problematic for a time. By mechanisms like this, there was repeated positive

feedback between invention in the GPT, electricity, and invention in manufacturing AS.

As David and Wright (2003) point out, these forces, together with important changes in the labor

market, explain much of the timing of the productivity boom associated with electricity in

manufacturing. And as they, like David (1990), point out, a number of very interesting ideas emerge

from the historical studies which can illuminate the modern economic situation. I would summarize the

lessons of the steam and electricity eras as linked (1) to a number of areas whose examination makes the

idea of a GPT cluster more precise and applicable (and which generally represent the hard work of

actual application) and (2) to a number of other areas which needed further development conceptually.

A central idea in these histories is that a GPT may have attributes other than cost, and that the

transition from one GPT to another or the creation of an important new version of a GPT may involve

changes in attributes other than cost. For example, the transition from water power to steam power freed

manufacturing activity from the constraint of needing to locate next to water. Similarly, the later

transition from steam to electricity relaxed a minimum scale constraint, permitting “fractional power”

to be distributed closer to where it was needed on the factory floor. Similar remarks could be made about

many other transitions. The broad general point is that expanding the range of application of a GPT via

noncost improvements can trigger valuable new co-invention.

Indeed, new and improved versions of an existing GPT do more than just reduce cost. Two examples

which have been studied in detail are a specific new version of the steam engine, the Corliss steam

engine, and the fall in entry barriers which permitted a number of new forms of computer to compete
29 The advantages included such things as making one-story rather than multistory plants. Clearly, full diffusion of such

advantages will take a long time.
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against IBM mainframes.30 In each case, the new version of the GPT triggered a new round of

innovation in using sectors and expanded the range of uses of the GPT.

There are two welfare implications of a new and improved GPT, whether it is on an entirely new

technical basis (electricity vs. steam) or within a technology (Corliss vs. earlier steam engines.) One is

that the change in product characteristics adds value above and beyond a decrease in cost. This is a

familiar “new goods” analysis. To take an example from transportation, an automobile or a truck has

different characteristics than either a horse-drawn conveyance or a railroad. Costs are lower than a

horse-drawn alternative, but not uniformly: costs are dramatically lower for middle distances and for

frequent use, for example. Costs are higher than for a railroad, but flexibility in routing is far better for

the truck or auto. These improved product characteristics mean that the new transportation GPT adds

more value than cost lowering—it adds value through the area under the demand curve for autos and

trucks.31 A second welfare implication of a new version of a GPT arises from new innovation which is

enabled in applications sectors. Rosenberg–Trajtenberg, Bresnahan–Greenstein, and Bresnahan–

Gordon point out the value of this for the three examples just discussed, and David and Wright

(2003) point out the value of this incremental innovation for electrification.

Perhaps the most important confusion about the scope of the GPT idea and analysis comes from a

focus on the narrow and technical in defining “technologies.” This is not unrelated to the problem (more

precisely, the error) of interpreting the idea of a GPT as being about technically led or science-led

technical progress.

The first point is that, from an economic perspective, technical progress is defined in terms of the

location of the production function. If X lets society produce the same output with fewer inputs, or more

or better output (new goods) with existing inputs, X is technical progress. Thus improvements in

management, whether “technical” or not, are technological progress. Process inventions, product

innovations—they all count.

This is why the list of potential GPTs made by Lipsey et al. (2005) contains such organizational

technology examples as the factory system, mass production, and the Toyoda system (sometimes known

as lean production). Each of those was, at one time, widely used in manufacturing, was a mechanism for

inventing applications in a wide number of different industries, and underwent improvement over time.

Indeed, if we look at some of the research papers which have examined the close relationship between

a GPT and its applications, it is not at all clear that the focus should not be on management innovations

rather than narrow technologies. Certainly the papers on steam and electricity we just saw emphasized

reorganization and relocation as much as “engineering” in a narrow sense. As we shall see, this is a

central idea of the modern era of the application of information and communication technology as well

(see Bresnahan and Greenstein, 1996).

Another set of interesting issues arising from the historical studies concerns the role of groups or

related complements and groups of related GPTs. A large number of different complementary “tech-

nologies” in the engineering sense are in each of the GPTs just studied. That would be true of modern

GPTs in ICT as well. We could think of a long list of different engineering technologies in a modern

computer connected to a network, from the semiconductor to software to communications technologies.
30 For the steam engine example, see Rosenberg and Trajtenberg (2004). For the computing example, see Bresnahan and

Greenstein (1996).
31 See Bresnahan and Gordon (1997), which has a good deal of material on complementarities in innovation.
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This raises a number of interesting questions about how to set the scope of analysis. Do we focus on the

semiconductor (important in missiles, aircraft, hearing aids, and many more things) or on the invention

based on the semiconductor which is based on the integrated circuit (important in computers, commu-

nications, automobiles, and many more things) or do we focus on the computer or the communications

system or both? If on computers, do we focus on business data processing, on the PC, the minicomputer,

or all? These questions are raised by the historical studies. So, too, is the guiding principle of answering

them. One cannot resolve these scope questions looking only at technical concerns; they are ultimately

questions about markets and economic organization.

There are also a number of points emerging from the history which are more than improvements to

the basic definition of a GPT or ideas about how, precisely, to apply it. The largest of these concern time.

The delay in the arrival of a GPT in creating value, its slow diffusion, and its ability to deliver sustained

advantages over decades or even substantial parts of a century are important topics I shall treat below.
2.3. Other historical studies (and more ideas)
Another very interesting example of the microeconomic branch is Nathan Rosenberg’s (1998) work on

the creation of the chemical engineering discipline. The span of applicability of chemical engineering is

comparatively narrow in that the applications sectors are primarily in petroleum and petrochemicals.

However, as he points out, the crucial event in the founding of the chemical engineering discipline was

the creation of a set of valuable general pieces of knowledge about the design of (chemical processing)

plants in those industries. Those plants are highly heterogeneous, making different products, albeit all

chemical. The knowledge was neither contained in the preexisting discipline of chemistry nor, in its

general form, understood by the existing body of plant designers. Rosenberg makes a convincing case

that this generalization was valuable, and that it involved the joint development of a GPT and of

important advances in applications sectors. Essential to his argument that the knowledge in the engineer-

ing discipline is a GPT, however, is his point that it forms a toolkit for inventing. The people who use

chemical engineering knowledge to design plants are making manufacturing process inventions.

One advantage of this microeconomic approach is that it brings knowledge creation to the foreground,

rather than assuming that R&D creates knowledge. The key knowledge creation in chemical engineering

involved understanding what could be made general (or abstract) and what could remain specific to the

design of a particular plant making a particular chemical product. As the engineering discipline gained

experience in designing plants of different types, and as plants came to make more complex and different

chemicals, the general knowledge continued to improve. It used the concept of “unit operations” to refer

to building blocks of process design which were common to all the different applications sectors.

Inventions made in one applications sector were candidates to become general, and many did. Through

this learning process, there is continued positive feedback between invention in the GPT and the various

using industries, creating—on an industry-wide rather than economy-wide basis—SIRS.

Rosenberg makes the argument, by way of a quickly look at other engineering disciplines, that any

toolkit for invention is a candidate to be a GPT. As long as (1) some of the specific applications

inventions create opportunities for continued learning about what can be general and (2) improved

general knowledge enables new specific invention opportunities, this seems to be quite right. He also

points out the value of locating the GPT in a university academic discipline. Academic engineers are
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(in part) rewarded for priority in having ideas that they put into the public domain and (in part) rewarded

through consulting contracts drawing on those public ideas, an apt incentive scheme for the learning

model Rosenberg delimits.

There is another important lesson in the Rosenberg analysis. Like chemical engineering, many tools

for invention arise from the practice of inventors. That is, rather than science-push (or any other general

knowledge-push) the creation of tools is often need-pull. For those who tend to think of GPT analysis as

a model in which the general leads and the specific follows, this is an important lesson.32

The creation of a GPT through invention of toolkits for invention is not limited to the academic

domain. An excellent example is the creation and improvement of the database management system in

computing. Co-invention in the uses of ICT often takes place at the level of the individual using firm.

Considerable effort is expended by the computer and communications departments of firms in this

regard. The technical part of that effort—as opposed to the “business model” part of co-invention—has

been steadily improved through the creation of improving tools. Database management systems lower

the costs of building and maintaining large applications systems in companies, thereby lowering the

costs of co-invention.

Another important set of ideas has to do with the role of finding markets for GPTs in the beginning.

We saw that steam and electricity differed in this in an important way. A very detailed study based in

part on the microeconomic approach is also used by Helpman and Trajtenberg (1998a) (in a paper where

the central model is a closed aggregate growth model.) Their theory allows for a number of different

effects, including the aggregate demand (willingness to pay times market size) in an AS, the immediate

benefit of the GPT relative to the technologies in use in the AS, development costs in the AS per needed

additional innovation and the number (scope or complexity) of complementary components which

would need to be innovated in the AS. Their empirical section is a historical investigation of early

adoption of semiconductor technology in different industries. Their framework is one in which a GPT

replaces a preexisting (general purpose) technology, so that at least at the beginning we need not think

about the founding of new industries and new markets.

The conclusion reached by Helpman and Trajtenberg is that sectoral pattern of early adoption of

semiconductors was driven, not by tradeoffs among the four factors identified in the previous paragraph,

but by the existence of a few sectors (such as hearing aids) in which all four factors were very favorable.

Perhaps more interesting, the laggard sectors (such as automobiles or telecommunications) they

characterize as strongly determined by the number (i.e., scope or complexity) of complementary

innovations which would be needed to incorporate the new GPT. This second conclusion is an important

general lesson about GPTs. Their rate of diffusion is determined in significant part by the need to invent

complementary inputs in the applications sectors.

Finally, while Helpman and Trajtenberg have a formal model with perfect information, in their

empirical section they are not afraid to examine the “forecast errors” which led early observers to see

certain applications sectors as likely demanders of the GPT. The forecast errors they identify focus on

the potential benefits of the GPT in the AS, underestimating the size and complexity of co-invention

needed to make a successful adoption. They note as a historical accident that, while AT&T’s develop-

ment of the semiconductor for telecomm uses involved a “forecast error” there was also a “historical

accident” that linked Bell to hearing aids. The general analytical point, which has not been deeply
32 For the general importance of this problem, see Chapter 9 by von Hippel in this volume.
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analyzed in GPT models, is that at the beginning there can be very limited information about the

applications of a potential GPT among technologists and about the value of using a potential GPT

among applications sectors.
3. Econometric and (Further) historical investigations

A number of different studies have attempted econometric investigations related to GPTs. The difficulty

of obtaining systematic data on co-invention in the applications sectors is the core problem for these

studies.

3.1. Using patent data
One bottleneck in the systematic study of technology is appropriate data. In looking for data for studies

of GPTs, as in many other areas, scholars have turned to the use of patent data. Patent data offer a

potential path out of the problem that most data source focus on the technically exciting GPT and less on

the mundane AS.

The chief advantage of patent data (beyond their existence) is that patent citations can be used to tell

us of technological links between different inventions. This is the core of the empirical strategy used by

Hall and Trajtenberg in their effort to identify, in patent data, modern GPTs.33 As they acknowledge,

there are a number of drawbacks to the use of patents in identifying GPTs as well. Some of these are

familiar from the use of patents in other contexts. Not all innovations are patented, and many patents are

associated with very little innovation. Hall and Trajtenberg (like patent-using scholars generally) do a

solid job of dealing with the problem that many patents are associated with little innovation, and

acknowledge the limitation that important innovations may not be captured by patents.

Here as in other contexts, the patent data are surprisingly informative. Hall and Trajtenberg identify a

list of patents which are cited across a wide variety of patent classes (are general,) are widely cited and

are cited themselves by widely cited patents (are fecund) and that are in patent classes which grow

rapidly (are in a generally important area.) Extrema on those characteristics34 and on certain features of

the patent class provide a working definition of a patent which may be advances in GPTs. Their method

points to patents in computer programming methods (particularly in object oriented programming) and

to patents related to electronic commerce on the Internet. Those findings suggest that the method is

stronger for identifying patents which may have GPT features within the list of objects being patented in

a given era (and given the incentives for strategic patenting in that era) than for identifying GPTs

generally. Yet those general, fecund, and growing patents are interesting technical advances.

Another study based on patent data illustrates the same principle. Moser and Nicholas (2004)

undertake a study of electricity patents in the 1920s. They find that, compared to other patents of that

era, electricity patents were broader in scope and more original than patents in other classes. (Their

definition of “originality,” based on multidecade-long citation lags, is an interesting idea in patent
33 See Hall and Trajtenberg (2004) on this specific use of citations and Jaffe (1986) and the substantial literature based on his

work for the idea that citations can help identify technology spillovers more generally.
34 . . . and on other characteristics, such as having a long tail of citations, which are also examined in the paper.
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analysis.) They face a severe data challenge, however. As we saw above, the important co-invention for

electricity in this era were typically industrial engineering advances. These typically are not patentable.

Thus Moser and Nicholas cannot observe the inventions which are related to electrification.

There is another challenge in using patents to studyGPTswhich is specific to this context. Patent citations

measure (in theory) knowledge spillovers, not necessarily the spilloverswhich follow from IC. The spillover

from a GPT to an AS may involve two patented inventions and yet there may be no citation linking them.

Consider a (patentable) improvement in the tools used to make integrated circuits (steppers and the like)

which permits successful manufacture of improved microprocessors and computer memory chips (also

patented); suppose the existence of computers based on those faster chips enables new (patented) software

innovations. It would be odd for the software patent to cite either the semiconductor or the semiconductor-

manufacturing-machines patents. Those patents are not antecedents of the software invention in a technical-

knowledge sense. Instead, their IC arises through their complementarity in the marketplace.

However, a technology can be general in the sense that it enables complementary innovations in a

wide variety of sectors without a patent on that technology being cited by patented inventions in a wide

variety of sectors. This distinction is particularly important for the eras which are studied by Hall and

Trajtenberg (1967–1999) and by Moser and Nicholas (electricity in the 1920s). In each era, historical or

econometric methods have brought forward a specific hypothesis about the innovations which are

complementary to the GPT. For the modern era, computers in business data processing are an important

GPT, and many of the important AS innovations associated with them are hard-to-patent changes in

management practices, organizational structures, or marketing practices. For electricity in the 1920s, the

important complementary innovations were in hard-to-patent plant-floor layout improvements and

related industrial engineering inventions.

One area in which the discussion of GPTs has become considerably richer with further research is in

understanding how and to what kind of phenomena models built around the basic structure can be applied.

3.2. Efforts to create data in the modern era
Studying the modern era of the application of information and communication technology in a wide

number of white-collar work automation contexts has posed real data challenges. One issue is already

familiar from discussions above. Data sets for counting computers, telephone lines, data switches, and

other “technical” innovations at the firm or plant level are quite good, based primarily on business

surveys undertaken to link salespeople to clients.35 Data sets with information about applications are

much more difficult to obtain. Some data sets have “applications software” but this often means

programmer tools such as database management systems or spreadsheets. That information does not

tell us what economic applications are running on the database or the spreadsheet.

Historical and case-study work reveals that the most valuable applications of ICT in large organiza-

tions over the first 50 years of computing had a number of nontechnical features. Typically these

applications involved reorganization of (white-collar) work and involved new products. A credit card

from a bank, for example, involves a complex new organization to market credit cards (“database
35 Most work in economics follows Bresnahan and Greenstein (1996) in using what is now known as the Harte Hanks data. This

is a large scale survey of (approximately) establishments focusing on their ICT use. Erik Brynjolffsson has done the economics

profession a great favor by creating a firm-level database using these data.
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marketing”) to underwrite the extension of credit, avoid fraud, and to collect debt. These organizational

and product features fall outside the scope of the data sets available to researchers.

The literature has attempted to overcome this limitation by three kinds of strategies. The first is “data are

the plural of anecdotes.” This approach uses case studies to determine the kinds of applications are being

undertaken in a number of sites, and then uses observables in the data set as proxymeasures for applications

categories. Shane Greenstein and I used this approach to categorize applications of computing in large

organizations according to the complexity of the organizational changes associated with co-invention.

Another approach has been to draw on, or attempt to create, measures of organization at the firm level.

Organizational measures include labor-relations practices in most of these studies.36 More general organi-

zational measures linked more broadly to “good management,” to centralization of authority, and so on are

another area of active research. Since existing data sets do not measure these variables, scholars have

launched survey instruments and linked the results to the existing data sets at the firm or plant level.37

One finding from this literature is that the combination of information and communications technol-

ogy with organizational changes is profitable and productive at the firm level. The complementarity

between invention in ICT and co-inventions of new organizational structures is, of course, an important

part of a GPT cluster. Much of the research effort has been focused on the question of whether

investment in ICT is productive, surely one of the oddest questions ever to distract economists.38

A smaller literature has focused on the more useful and important economic question of complementa-

rities and co-inventions.39 This appears to have established, as a broad general proposition, that the

reorganization of work is complementary to changing the basis of white-collar work to use ICT. In

calling for reorganization to make large gains, the computerization of white-collar work appears to be

like the steam-based or electricity-based co-invention associated with those earlier GPTs. What kind of

reorganization is optimal in which industries remains less than fully understood, however.40 As yet, we

have no story as compelling as “unit drive” for computers and communications.

A smaller literature attempts to understand the timing of adoption of ICT and of co-invention.41 For

the part of computing used in large organizations in white-collar work, it is clear that much of the delay
36 For example, Bresnahan et al. (2002) use measures of labor-relations management practices gathered in a survey by Kochen.

Ichniowski et al. (1997) undertake a detailed study of those practices and of other organizational variables in the plants they study.
37 Bloom and Van Reenen (2006), for example, report on an international survey of manufacturing practices, one of a number of

large scale surveys they and coauthors have taken to deal with the data dearth in this area.
38 While many organizational information systems fail, the vast bulk of investment in these systems occurs ex post learning

about whether they are going to succeed or fail, that is, consists of capacity enhancements for systems that are heavily used,

maintenance of systems which are in steady use, and so on. We have in the research literature the spectacle of economists being

prepared to assume that tens of thousands of firms were making repeated mistakes over decades on decisions typically involving

millions or tens of millions of dollars and, in many industries, constituting the most basic choices of productive technique.
39 Brynjolfsson and Hitt (2000) have a review of the productivity literature and the co-invention literature as well with a wide

variety of citations.
40 A long literature examines the role of centralization of managerial authority in computerized white collar work. Bloom et al.

(2009) have a recent study showing that both centralization and decentralization may be complements to ICT in different

circumstances. Athey and Stern (2002) take up the very interesting direction of looking at a very specific and narrow ICT

use and studying not productivity outcomes but the more theoretical salient product quality improvements.
41 See Bresnahan and Greenstein (1996) for this analysis of computer use in organizations. As Goolsbee and Klenow (2002)

show, the diffusion of personal computers is driven by very different considerations, notably (in the modern period they study)

the network effects associated with using the computer as a communications tool.
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over the last 60 years in the diffusion of ICT has been driven by the costs of co-invention. Computer and

communications equipment has very rapid price falls driven by technical progress in the GPT itself.

That technical progress exploits powerful engineering and physical science opportunities, and, as

science and engineering advances have grown more expensive over time, larger and larger markets

for the equipment have financed more and more impressive advances. In contrast to that rapid technical

progress, however, installed computer systems undertaking a productive task involve co-invention that

can be much slower. Co-invention in marketing and in organizational change, for example, are vastly

slower invention processes than invention of computer and communications hardware. Accordingly,

it is the co-invention, not the invention, which is the bottleneck for diffusion.

That applies to only one of the GPT clusters in ICT, the one surrounding business data processing.

Here the GPT itself was first mainframe computers and later servers, and the AS were as I have just

described. Other uses of computers and communications equipment, such as for scientific and

engineering calculations, have had far less of a problem of slow co-invention.
4. Timing and the relation to economic growth

A number of GPT theories have attempted to understand the timing of benefits to GPT and AS

coordinated invention. The research goal is ultimately to understand real world phenomena, especially

macroeconomic growth phenomena.
4.1. Delay and diffusion
One timing issue is simply delay or diffusion.42 Many technologies are first invented, and only later

adapted and adopted widely in industry. The diffusion lag between the date of invention and the date of

full realization of economic gains is well established in the empirical literature for technologies

generally.43 The very idea of a GPT draws a distinction between raw technical progress (GPT invention)

and the further innovation needed to create value-in-use (AS invention.) Thus it is very natural to

examine the diffusion of a GPT as being a source of lags between raw invention and the ultimate

productivity or output growth. Also, at least three widely analyzed GPTs, electricity, steam, and ICT

(computers), showed slow diffusion at the beginning followed by acceleration.44 Similarly, Griliches’

classic study of at first slow and later accelerating diffusion is for hybrid corn, an invention for making

inventions (i.e., a microeconomic GPT.)45 Griliches shows how different rate of diffusion apply for the
42 See Helpman and Trajtenberg (1998a). Jovanovic and Rousseau have a survey of this literature and a detailed survey of the

various kinds of evidence brought to bear on the electricity and computerization GPT eras.
43 See Stoneman (1983) for a somewhat dated but very inclusive survey and Hall (2004) for a review of the modern literature.
44 On electricity, see inter alia David (1990) (though David rather oddly starts the computer age with the invention of semicon-

ductor memory and the microprocessor, about 15 years after the earliest substantial use of computers in business data processing,

he nonetheless sees slow diffusion.) On steam, see inter alia Crafts (2004). On ICT, see Bresnahan and Greenstein (1996) among

many others.
45 See Griliches (1957), which is a study of the diffusion rates of the different strands of hybrid corn but which also has a

discussion of the economics of invention of the specific strands.
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same technology in different applications depending on market conditions, clearly relevant to the

diffusion of GPTs.

There are a wide number of different possible reasons for slow diffusion of technologies at the early

stages followed by more rapid diffusion later on. That is, there are many theories of the classic S-shaped

diffusion curve. These can involve supply constraints; value may be created in use only after a

technology has fallen below a certain cost or achieved certain features. They can involve demand

constraints; demanders may be heterogeneous, with lower value users (who are more numerous than

higher value users) adopting later,46 or there can be adjustment costs from, for example, learning in

adoption.47 Networks can communicate information about new technologies at speeds that vary over

time.48 When prices are falling in an anticipated way, the user cost associated with adopting a new

technology includes a depreciation term (raising the true economic price of adopting.). A similar

dynamic concern arises when there is anticipated technical improvement, this, too, can lead to rational

delay. The user-cost theories will predict slow adoption at first followed by acceleration most simply,

after a while, it is no longer rational to expect improvements and the depreciation term goes away. All of

these forces arise even when there is a single technology (not multiple ones as with a GPT and AS). The

forces can be quite difficult to distinguish empirically.49

One might have thought, before writing down a model, that the diffusion of a GPT should be doubly

slow at the beginning. First, there is the slow diffusion of the GPT across the different AS of an

economy. Second, once a complementary innovation has been made within a particular AS, there is the

slow diffusion of that innovation across firms. Only after both source of slow diffusion have been

overcome will we see acceleration.

All of the causes listed in the last two sections are subject to diminishing returns. Supply constraints,

once overcome, are overcome. Once a heterogeneous body of adopters has been served, it is served.

Another reason to consider the case of a GPT is that positive feedback between and among GPT and AS

could sustain the period of diffusion past the problem of diminishing returns. This is the point of the

GPT diffusion model (Helpman and Trajtenberg, 1998a). Helpman and Trajtenberg identify a further

effect which is linked to the potential for continued improvement and the positive feedback cycle of

GPTs. They build a model in which applications sectors must take time as well as resources to make

complementary investments to the GPT, the level of inventive effort of either GPT or an AS can vary,

and the timing of GPT innovation (and later improvements) and AS co-inventions (and later improve-

ments, if any) are endogenous. They show that positive feedback between GPT and AS and among the
46 The simplest theory has exogenous technical change and a distribution across potential adopters in value-in-use. Higher value

users adopt earlier. If there is a unimodal distribution of user’s values (with the mode toward the center of the distribution) then

an S-shaped diffusion curve follows. The rapid phase of adoption occurs when the improving technology leads to adoption by

the large number of users with values near the mode.
47 If the learning is an adjustment cost and if any of what is learned by early adopters spills out to others, both slow initial

learning and later acceleration can be equilibrium phenomena.
48 This can also predict the S-shape for diffusion if information spreads through a network of users who are broadly symmetric.

At first, there are few users who know of the innovation, and thus few messages about it over the network. At the end, there are

many messages, but few users who have not yet heard them. In the middle, there is a burst of adoption when there are both many

senders and many receivers of messages. One would in general expect information to spread slowly then more quickly

(depending on the structure of the network, as long as it is near symmetric.)
49 As these footnotes suggest, there are literally dozens of other theories from a number of disciplines. They are certainly not

distinguishable using aggregate data and can be very difficult to distinguish econometrically using microdata.
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AS affects the diffusion path. In particular, they show that there must be a “second wave” of improve-

ments; after all the AS have first begun to use the GPT, they have a renewed round of co-invention and a

renewed round of growth.

The basic GPT structure adds, in the Helpman–Trajtenberg model, another reason for S-shaped

diffusion. There is a feedback mechanism between GPT and AS innovations. The steep part of the S, the

period of rapid adoption, can arise because the innovation feedback cycle has taken off. Because of the

GPT’s innovation incentives, this is a size-of-market phenomenon. The feedback cycle is strong once

there are sufficiently many AS adopting (or foreseeably adopting in the near-enough future for

discounting not much to reduce incentives). Perhaps the most important thing about that particular

theory of delayed rapid adoption is that the spread can be widely across an economy.

The Helpman and Trajtenberg analysis illustrates two important things about the role of GPTs. Since a

GPT and all the related AS form a positive feedback loop, a new GPT has an important element of creating

a new system of innovation. At the beginning, this will be limited in importance by (among other factors)

the low state of development of the GPT technology itself and the overhang of successful solutions

connected to an older technology or technologies. At the beginning, therefore, the incentives to innovate

are less strong than later on. Endogenously, through the early adoption of GPTs and early co-invention in

some or all AS, the incentives to innovate rise later on. Thus, in addition to the ordinary forces leading to

slow diffusion of new technologies, Helpman and Trajtenberg identify a second round acceleration caused

by a widespread switch to the new system of innovation in the new positive feedback loop.

It is worth pointing out that this effect arises entirely from incentives as long as some aspect of the

innovation process takes time. The part which takes time could be time-to-invent as in the formal model,

or discovery of new technical opportunity only after old invention, or visibility of applications only after

a GPT is invented (or vice versa!) or anything else that introduces inevitable delay. It arises even if there
is an excellent mechanism for coordination among inventors, even if there is no inherent reason for

multiple rounds of innovation like “ladders,” and even if there is no problem of incomplete information.

The essential mechanism is that the (fully foresighted, fully informed) incentive to innovate within the

new positive feedback system rises over time as the GPT takes hold.

In short, there are a number of reasons why a GPT might lag behind identification, at a broad general

level, of an overlap between technological opportunity and a growth constraint. These include slow

diffusion, perhaps even slower than usual because of the need to co-invent. They include the typical

delays associated with waiting for lower costs or improved features in the new technology

(or technologies) to cross many demanders’ thresholds. They include difficulties to internalizing returns

to co-invention because of fragmentation (the horizontal externality) or because of contracting diffi-

culties between GPT and AS (the vertical externality.) Noting that many of the GPTs we have seen

historically have important widely used complements, another potential source of slow diffusion is

waiting for the weakest link among a long chain of complements. All of these can be analyzed using the

ordinary tools of the economics of innovation.

5. Aggregate growth waves

The long run process of economic growth does not appear to be smooth. First, there are eras of higher

and of lower productivity and output growth. Since the work of Paul David (1990) we have seen much

renewed interest in using the analytics of “productivity slowdowns” of the distant past to understand the
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“productivity slowdown” of the recent past. The analogy suggested by David links the era of the late

twentieth century to the period of slower growth before the First World War. Each of these slowdowns,

we now know, was followed by more rapid growth (though of course how long the current boom will

last into the twenty-first century is still a matter of forecast.) More broadly, there is renewed interest in

long waves in output and productivity growth.

A good deal of the motivation for renewed interest in “long wave” theories is the modern “produc-

tivity paradox” about information and communications technology, encased in a timeless quip by

Robert Solow. As in the late nineteenth and early twentieth centuries during the early period of the

diffusion of electricity, measured productivity growth in the rich countries was clearly lower during the

early period of the diffusion of computers (say 1960–1980) than beforehand, while productivity growth

accelerated considerably, and in ways apparently tied to ICT, in a more recent period.

We thus have an explosion of models which attempt to explain various features of Kondratieff’s “long

waves” using significantly more advanced modeling tools than were available in the 1920s.50 A number

of papers, beginning with Helpman and Trajtenberg (1998b) have investigated the possibility of long

macroeconomic cycles associated with the invention and diffusion of GPTs. While these models differ

in their details, they all identify conditions in which the invention of a GPT can first lead to a slump as

resources are devoted to it, only later creating a boom as the economic return to the invention is

revealed. This literature is enormous and well summarized in another review article, so I shall not deal

with the different models in detail.51

While it is not obvious that these will ever be tested, this has led to a rich set of models. One point is

common to other models of aggregate growth, that there is a macroeconomic feedback effect between

the size of the economy and the incentive to innovate. The SIRS in GPTs are more valuable in a larger

economy; exploiting them may itself create a larger richer economy. Thus once a GPT cycle gets going,

it may have a period of general equilibrium positive feedback. Similarly, if technology becomes

available to augment the available factors of production, an increase in the size of the input market

and the incentive to innovate may have a positive feedback loop. The empirical importance of these

general equilibrium effects remains, however, as a challenge for future empirical work rather than a

currently established fact.

The S-shaped diffusion of a GPT is one way to predict periods of more rapid technical progress at the

aggregate economy level. Aggregate economies will have periods of particularly rapid technical

progress whenever (1) there is a growth-macroeconomic coincidence between discovery of a GPT

and a multiindustry growth need and (2) the GPT and its AS follow an S-shaped diffusion curve.

The literature has also sought to explain why there might be a lower level of aggregate productivity
growth than normal in the period before a GPT takes off. There are at least two broad classes of such

theories.

In the first set of theories, the capital or R&D investment in a GPT can occur before the payoff to the

use of the GPT occurs. Given the long lead times for many GPTs discussed in the previous sections, this
50 For a modern translation, see Kondratieff (1984). Kondratieff, looking at historical periods before the early twentieth century,

saw a link between these “long waves” and new energy sources. He also cautioned against building a long wave theory primarily

around “technics.”
51 One can find an impressive review of theoretical contributions in Jovanovic and Rousseau (2005), who also have a very

sympathetic review of the empirical evidence of the empirical relevance of specific theories.
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is a potentially large effect. The effect will be large if there are substantial early costs in the R&D or

capital investment of a GPT. A long lead time for science or for pure research seems an unpromising

way to obtain such a theory, as the science and pure research associated with past (and likely future)

GPTs are simply not expensive enough in the aggregate. Instead, this seems a more promising line of

analysis for “infrastructure” GPTs like railroads or (wire line) telecommunications where there is a

substantial capital investment common to many customers. For computers, electrical power, steam, etc.,

it is very difficult to identify substantial costs of that form. (After electrical power generation began to

be shared across smaller firms, the same effect could cut in, but I do not think this is what theories of a

preelectrification slump have in mind.) To be sure, those industries all involve substantial capital

investment, but the capital investment occurs (largely) at the same time as use. Indeed, as we have

seen, the key feature of all of electricity, steam, and computing was that there was not all that much

investment in the relevant capital goods in the early phases. This effect, therefore, seems unlikely to be

of great general importance.

Another set of theories in which there is a lower productivity growth era before the takeoff of a new

GPT works through anticipation that slows the start of a GPT, thus leaving the economy growing slowly,

rather than through the timing of expenditures per se. These theories are not, in principle, implausible. In

general, large scale coordination can be hard to achieve. It could be harder to achieve if there is

anticipation that slows it. For example, the competition from an old technology could be particularly

effective in slowing diffusion early on, and thus in imposing an external cost on the new GPT.52 While

logically possible, showing this chain of causation seems unlikely for steam or electricity. And it is very

unlikely for the early phases of the use of ICT as a technology to automate white-collar work in the late

twentieth century. Earlier white-collar automation technologies were unimpressive, for one thing.

Note that to predict periods of more or less rapid technical progress at the aggregate level there is no

need to assume that there are periods in which growth is suppressed. Fluctuations can arise if most

technical progress most of the time is incremental and slow, with intermittent outbreaks based around

a GPT.
6. Concluding remarks

Two potential stories of long run come to mind, and I finish on them as they are related to modern

fluctuations in aggregate growth.

The first story might be called “statistical.” It hinges on the point that every economy is remarkably

diverse in its technologies and in its varied sources of technological progress. Aggregate productivity

growth is a mixture of local and incremental advances with general clusters of linked innovations, like

GPTs. There is not an aggregate-growth-influencing GPT cluster every decade. When there is such a

cluster, aggregate productivity growth is higher. When there is not, aggregate productivity is lower, but

not “too low” in the sense of the theories just reviewed. Aggregate productivity growth rates will

fluctuate if the local and incremental are reasonably constant over time and the general occurs only

intermittently. Similarly, aggregate productivity growth will fluctuate over time if there are a large
52 See, for example, Atkeson and Kehoe (2007). A review of a number of different models with complex dynamic elements can

be found in Jovanovic and Rousseau (2005).
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number of micro GPTs at all times at different stages of diffusion and if the GPTs with economy-wide

scale arise only intermittently. Again, to explain cycles there is no need for a theory of the periods of

lower productivity growth in which something is going wrong in periods of slow growth.

The second story puts more weight on the importance of GPTs but also does not conceptualize the

period before a GPT’s rapid diffusion as having unnaturally slow growth. Consider the possibility that

the long run growth of the aggregate economy involves overcoming a series of constraints through

innovation. At a very long time scale, fossil-fuel-based power and mechanization in agriculture and

manufacturing helped relax critical constraints associated with gaining most of human-consumed heat

and light directly from the sun and gaining most of productive power from wind, water, and muscle.

This constraint was worth relaxing. Technical progress relaxed, over a long period of time, that growth

constraint. The mechanization and later automation of much work in agriculture relaxed an important

constraint, as did the mechanization and later automation of much blue collar work in manufacturing.

Periods of success in mechanization and in automation were periods of rapid growth for a long period of

time. But automating factory work, for example, did not emerge as a growth constraint until the factory

system was in place and not until manufactures were an important piece of output.

To continue the same long time scale, once human labor in the physical sense has been automated,

other growth constraints are revealed. The twentieth century saw the lack automating traditionally

white-collar functions as a growth constraint. These functions include managing production but perhaps

more importantly buying inputs and selling outputs. Only after there was work to manage, and only after

there were input and output markets, was this an important constraint. Similarly, the problem of

automating (largely white collar) work in the services sectors did not become a crucial growth constraint

until services loomed large. Automating white-collar functions, to go back to the current example, did

not have a high shadow value as a growth constraint until earlier economic progress had created

something to manage.

My point here is not that there is some natural order of technologies. One could make the same point

by noting diminishing returns. Even if the large cluster of technologies associated with the first and

second industrial revolution had very large increasing returns over a wide range, eventually technolo-

gies which automated (to continue to paint in the broadest strokes) some firm functions (the blue collar

ones) while not automating other firm and market functions (the white-collar ones) were going to hit

diminishing returns.

Instead my point is that if the demand for widely used new technologies, such as GPTs, arises from

relaxing growth constraints, it is easy to understand why there are swings in the level of productivity

growth over time. As we saw above, there are many good reasons to believe that a GPT that does address
a growth constraint will diffuse slowly. Further, there is no particular reason for a GPT associated with a

growth constraint to emerge shortly after the constraint gains a high shadow value.53 In general, we

should expect a long and variable lag between the emergence of a key growth constraint and its
53 Daron Acemoglu (2002) disagrees, making the useful remark that because it has both AS and general application, a GPT is

more open to demand inducement than other kinds of technology. While I agree that AS innovations are frequently demand-

induced, there are still fundamental limitations on what any particular GPT can deliver. Also, this argument does not imply

the clearly false proposition that GPTs themselves arise through demand inducement associated with their most valuable

applications.
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relaxation through diffusion of an apposite GPT. Even under the best of circumstances in terms of

general macroeconomic policy, of cultural and business norms, and of pro-innovation and progrowth

policy, the lags will be long and variable.

Long swings in productivity growth can arise simply because of those long and variable lags. Do we

need a theory in which there was something going wrong to explain the productivity slowdowns of the

late twentieth century or of the late nineteenth/early twentieth century? An alternative explanation,

arising from my second story, is that in each case relaxation of earlier constraints had begun to slow

down in its growth impact and relaxation of new constraints had not yet begun to occur at a high pace.

In the late twentieth century slowdown, for example, the gains to automating blue-collar work were

slowing and the gains to automating white-collar work associated with computerization had yet to cut in.

Indeed, this appears to be the most attractive theory of the late twentieth century “productivity

slowdown” and its later reversal. Many people (foolishly) concluded that there must have been

something going wrong with firms’ investments in ICT technology during the early phase of the

diffusion of computers. We now know that the problem with “we see computers everywhere around

us except in the productivity statistics” was not with productivity, but with looking at computers in

economics departments rather than in firms. At the time of Solow’s remark, the ICT capital stock was

far too small to have (yet) created a growth boom, even though the private returns to use of computers

were very substantial.54
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